%This is a 2-page sample illustrating how to use the %multienum package \documentclass{article} \setlength{\textwidth}{6in} \setlength{\textheight}{8.5in} \setlength{\topmargin}{-0.5in} \setlength{\oddsidemargin}{0.25in} \usepackage{multicol,multienum} \begin{document} \begin{center} {\Large\bf Sample formating using {\tt multienumerate}} \end{center} \bigskip Sometimes we want to typeset the solutions to exercises. This is easy to do using the {\tt multienumerate} environment. \subsection*{Answers to All Exercises} \begin{multienumerate} \mitemxxxx{Not}{Linear}{Not}{Quadratic} \mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.} \mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or $(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$} \mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$ or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$} \mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$} \end{multienumerate} \bigskip \hrule \bigskip We can also enumerate the items using an even-only or odd only counter. \subsection*{Answers to Even-Numbered Exercises} \begin{multienumerate}[evenlist] \mitemxxxx{Not}{Linear}{Not}{Quadratic} \mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.} \mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or $(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$} \mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$ or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$} \mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$} \end{multienumerate} \hrule \subsection*{Answers to Odd-Numbered Exercises} \begin{multienumerate}[oddlist] \mitemxxxx{Not}{Linear}{Not}{Quadratic} \mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.} \mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or $(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$} \mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$ or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$} \mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$} \end{multienumerate} \bigskip \hrule \bigskip Sometimes we want to create sublists which are enumerated using an alpha counter. \begin{multienumerate} \mitemx{Which of the following numbers is the solution of the equation $x+3=7$:} \begin{multienumerate} \mitemxxxx{1}{2}{3}{4} \end{multienumerate} \mitemx{The value of $\log_28$ is:} \begin{multienumerate} \mitemxxxx{1}{$-1$}{3}{$-3$} \end{multienumerate} \end{multienumerate} \pagebreak \begin{multicols}{2} \subsection*{Answers to All Exercises} \begin{multienumerate} \mitemxx{Not}{Linear} \mitemxx{Not}{Quadratic} \mitemxx{Not}{Linear} \mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or $(s,3s-6)$} \mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$} \mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$ or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$} \mitemxx{$(2,-1,3)$}{None} \mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$} \mitemxx{Not}{Linear} \mitemxx{Not}{Quadratic} \mitemxx{Not}{Linear} \mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or $(s,3s-6)$} \mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$} \mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$ or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$} \mitemxx{$(2,-1,3)$}{None} \mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$} \mitemxx{Not}{Linear} \mitemxx{Not}{Quadratic} \mitemxx{Not}{Linear} \mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or $(s,3s-6)$} \mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$} \mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$ or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$} \mitemxx{$(2,-1,3)$}{None} \mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$} \end{multienumerate} \subsection*{Multiple Choice} \begin{multienumerate} \mitemx{Which of the following numbers is the solution of the equation $x+3=7$:} \begin{multienumerate} \mitemxxxx{1}{2}{3}{4} \end{multienumerate} \mitemx{The value of $\log_28$ is:} \begin{multienumerate} \mitemxxxx{1}{$-1$}{3}{$-3$} \end{multienumerate} \mitemx{Which of the following numbers is the solution of the equation $x+3=7$:} \begin{multienumerate} \mitemxxxx{1}{2}{3}{4} \end{multienumerate} \mitemx{The value of $\log_28$ is:} \begin{multienumerate} \mitemxxxx{1}{$-1$}{3}{$-3$} \end{multienumerate} \mitemx{Which of the following numbers is the solution of the equation $x+3=7$:} \begin{multienumerate} \mitemxxxx{1}{2}{3}{4} \end{multienumerate} \mitemx{The value of $\log_28$ is:} \begin{multienumerate} \mitemxxxx{1}{$-1$}{3}{$-3$} \end{multienumerate} \end{multienumerate} \end{multicols} \end{document}